Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 109, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481326

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency. METHODS: Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD. The SMAC-P (AVPIAQ) with cathepsin B-cleavable peptide (FRRG) was directly conjugated to DOX, and the resulting SMAC-P-FRRG-DOX prodrug was encapsulated into PEGylated liposomes. RESULTS: The SMAC-P-FRRG-DOX encapsulated PEGylated liposomes (Aposomes) form a stable nanostructure with an average diameter of 109.1 ± 5.14 nm and promote the apoptotic cell death mainly in cathepsin B-overexpressed cancer cells. Therefore, Aposomes induce a potent ICD in targeted cancer cells in synergy of SMAC-P with DOX in cultured cells. In colon tumor models, Aposomes efficiently accumulate in targeted tumor tissues via enhanced permeability and retention (EPR) effect and release the encapsulated prodrug of SMAC-P-FRRG-DOX, which is subsequently cleaved to SMAC-P and DOX in cancer cells. Importantly, the synergistic activity of inhibitors of apoptosis proteins (IAPs)-inhibitory SMAC-P sensitizing the effects of DOX induces a potent ICD in the cancer cells to promote dendritic cell (DC) maturation and stimulate T cell proliferation and activation, turning ITM into immune-responsive milieu. CONCLUSIONS: Eventually, the combination of Aposomes with anti-PD-L1 antibody results in a high rate of complete tumor regression (CR: 80%) and also prevent the tumor recurrence by immunological memory established during treatments.


Assuntos
Complexos Multienzimáticos , Neoplasias , Oligopeptídeos , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Catepsina B , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Imunoterapia , Neoplasias/tratamento farmacológico , Peptídeos , Polietilenoglicóis , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Acta Pharm Sin B ; 14(3): 1428-1440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487005

RESUMO

Immune checkpoint blockade (ICB) therapy targeting PD-L1 via monoclonal antibody (mAb) has shown extensive clinical benefits in the diverse types of advanced malignancies. However, most patients are completely refractory to ICB therapy owing to the PD-L1 recycling mechanism. Herein, we propose photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes (immune checkpoint blockade liposomes; ICB-LPs) to promote PD-L1 multivalent binding for inducing lysosomal degradation of PD-L1 in tumor cells. The ICB-LPs are prepared by formulation of DC8,9PC with photo-polymerized diacetylenic moiety, 1,2-dipalmitoylphosphatidylcholine (DPPC) and anti-PD-L1 peptide (D-form NYSKPTDRQYHF)-conjugated DSPE-PEG2k (anti-PD-L1-DSPE-PEG2k) in a molar ratio of 45:45:10, followed by cross-linking of liposomal bilayer upon UV irradiation. The 10 mol% anti-PD-L1-DSPE-PEG2k incorporated ICB-LPs have a nano-sized lipid bilayer structure with an average diameter of 137.7 ± 1.04 nm, showing a high stability in serum condition. Importantly, the ICB-LPs efficiently promote the multivalent binding with PD-L1 on the tumor cell membrane, which are endocytosed with aim to deliver PD-L1 to the lysosomes, wherein the durable PD-L1 degradation is observed for 72 h, in contrast to anti PD-L1 mAbs showing the rapid PD-L1 recycling within 9 h. The in vitro co-culture experiments with CD8+ T cells show that ICB-LPs effectively enhance the T cell-mediated antitumor immune responses against tumor cells by blocking the PD-L1/PD-1 axis. When ICB-LPs are intravenously injected into colon tumor-bearing mice, they efficiently accumulate within the targeted tumor tissues via both passive and active tumor targeting, inducing a potent T cell-mediated antitumor immune response by effective and durable PD-L1 degradation. Collectively, this study demonstrates the superior antitumor efficacy of crosslinked and anti-PD-L1 peptide incorporated liposome formulation that promotes PD-L1 multivalent binding for trafficking of PD-L1 toward the lysosomes instead of the recycling endosomes.

3.
J Nanobiotechnology ; 20(1): 436, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195911

RESUMO

BACKGROUND: Nanomedicine has emerged as a promising strategy for cancer treatment. The most representative nanomedicine used in clinic is PEGylated liposomal doxorubicin DOXIL®, which is first FDA-approved nanomedicine. However, several shortcomings, such as low drug loading capacity, low tumor targeting, difficulty in mass production and potential toxicity of carrier materials, have hindered the successful clinical translation of nanomedicines. In this study, we report a preclinical development process of the carrier-free prodrug nanoparticles designed as an alternative formulation to overcome limitations of conventional nanomedicines in the terms of technical- and industrial-aspects. RESULTS: The carrier-free prodrug nanoparticles (F68-FDOX) are prepared by self-assembly of cathepsin B-specific cleavable peptide (FRRG) and doxorubicin (DOX) conjugates without any additional carrier materials, and further stabilized with Pluronic F68, resulting in high drug loading (> 50%). The precise and concise structure allow mass production with easily controllable quality control (QC), and its lyophilized powder form has a great long-term storage stability at different temperatures (- 4, 37 and 60 °C). With high cathepsin B-specificity, F68-FDOX induce a potent cytotoxicity preferentially in cancer cells, whereas their cytotoxicity is greatly minimized in normal cells with innately low cathepsin B expression. In tumor models, F68-FDOX efficiently accumulates within tumor tissues owing to enhanced permeability and retention (EPR) effect and subsequently release toxic DOX molecules by cathepsin B-specific cleavage mechanism, showing a broad therapeutic spectrum with significant antitumor activity in three types of colon, breast and pancreatic cancers. Finally, the safety of F68-FDOX treatment is investigated after single-/multi-dosage into mice, showing greatly minimized DOX-related toxicity, compared to free DOX in normal mice. CONCLUSIONS: Collectively, these results provide potential preclinical development process of an alternative approach, new formulation of carrier-free prodrug nanoparticles, for clinical translation of nanomedicines.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Antineoplásicos/uso terapêutico , Catepsina B/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Poloxâmero/uso terapêutico , Polietilenoglicóis , Pós/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/farmacologia
4.
Biomaterials ; 289: 121806, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156411

RESUMO

A carrier-free prodrug nanoparticle has emerged as a potential approach to cancer therapy. It plays a vital role in enhancing the tumor targeting and therapeutic efficacy of the anticancer agent at sites of intention wherein the prodrug nanoparticle is potentially activated. Herein, five derivatives of cathepsin B-cleavable prodrugs are synthesized via chemically conjugating different cathepsin B-cleavable peptides (Phe-Arg-Arg-Gly, Phe-Arg-Arg-Leu, Phe-Arg-Arg-Leu-Gly, Phe-Leu-Arg-Arg-Gly) to doxorubicin (DOX). The peptide-DOX prodrugs can spontaneously assemble into nanoparticles via their intermolecular hydrophobic and π-π stacking interactions. The resulting cathepsin B-cleavable prodrugs nanoparticles formed different nanoparticle structures according to the amphiphilicity and flexibility of different peptides and their particle stability and cellular uptake mechanism are carefully evaluated in vitro. Among five prodrug nanoparticles, the Phe-Arg-Arg-Leu-DOX (FRRL-DOX) nanoparticle was formed to a size of 167.5 ± 12.4 nm and stably maintains its nanoparticle structure in saline media for 3 days. The FRRL-DOX nanoparticle is well taken up by tumoral nuclei and effectively induces cancer cell death with minimal toxicity to normal cells. In addition, the FRRL-DOX nanoparticle shows 2.3-16.3-fold greater tumor-specific accumulation in vivo than other prodrug nanoparticles and free DOX. The therapeutic effect of FRRL-DOX is finally examined, demonstrating 2.1-fold better anticancer efficacy compared to that of free DOX. Notably, the FRRL-DOX nanoparticle does not exert serious toxicity in its repeated intravenous administration at a high dose of up to 10 mg/kg (equiv. to DOX). In conclusion, the peptide sequence for cathepsin B-cleavable prodrug nanoparticle is determined to be successfully optimized in a way of increasing its tumor selectivity and lowering toxicity to normal tissues.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catepsina B/metabolismo , Catepsina B/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Pró-Fármacos/química
5.
Pharmaceutics ; 14(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35335852

RESUMO

Immunogenic cell death (ICD) is a powerful trigger eliciting strong immune responses against tumors. However, traditional chemoimmunotherapy (CIT) does not last long enough to induce sufficient ICD, and also does not guarantee the safety of chemotherapeutics. To overcome the disadvantages of the conventional approach, we used doxorubicin (DOX) as an ICD inducer, and poly(lactic-co-glycolic acid) (PLGA)-based nanomedicine platform for controlled release of DOX. The diameter of 138.7 nm of DOX-loaded PLGA nanoparticles (DP-NPs) were stable for 14 days in phosphate-buffered saline (PBS, pH 7.4) at 37 °C. Furthermore, DOX was continuously released for 14 days, successfully inducing ICD and reducing cell viability in vitro. Directly injected DP-NPs enabled the remaining of DOX in the tumor site for 14 days. In addition, repeated local treatment of DP-NPs actually lasted long enough to maintain the enhanced antitumor immunity, leading to increased tumor growth inhibition with minimal toxicities. Notably, DP-NPs treated tumor tissues showed significantly increased maturated dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) population, showing enhanced antitumor immune responses. Finally, the therapeutic efficacy of DP-NPs was maximized in combination with an anti-programmed death-ligand 1 (PD-L1) antibody (Ab). Therefore, we expect therapeutic efficacies of cancer CIT can be maximized by the combination of DP-NPs with immune checkpoint blockade (ICB) by achieving proper therapeutic window and continuously inducing ICD, with minimal toxicities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...